
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, Vol. 10, No. 11, November 2008, p. 2827 - 2839 
Review Paper 

Diffusional nucleation of nanocrystals and their self-
assembly into uniform colloids 

 
 

V. PRIVMAN 
Department of Physics, and Center for Advanced Materials 
Processing, Clarkson University, Potsdam, NY 13699, USA 
 
 
 
We review theoretical explanation of mechanisms of control of uniformity in growth of nanosize particles and colloids. The 
nanoparticles are synthesized as nanocrystals, by burst nucleation from solution. The colloids are self-assembled by 
aggregation of these nanocrystals. The two kinetic processes are coupled, and both are driven by diffusional transport. The 
interrelation of the two processes allows for formation of narrow-size-distribution colloid dispersions which are of importance 
in many applications. We review a mathematical model of cluster growth by capture of diffusing “singlets.” Burst nucleation 
of nanoparticles in solution is then analyzed. Finally, we couple it to the secondary process of aggregation of nanoparticles 
to form colloids. We address aspects of modeling of particle size distribution, as well as other properties. 
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 1. Introduction 
 
In colloid and nanoparticle science, it is important to 

devise controlled synthesis approaches for obtaining 
uniform particles in solutions. The mechanisms can be 
actually different for colloids — suspensions of micron 
and sub-micron size particles, as compared to 
nanoparticles — those of sizes 0.01 µm (10 nm), and 
smaller. A broader goal of a theoretical modeling program 
includes understanding the kinetics of nucleation, growth, 
aggregation, and surface interactions of fine particles. 
Here we review modeling [1-9] of the process of burst-
nucleation and diffusional growth of typically crystalline 
nanoparticles in solution, as well as of the accompanying 
secondary process of diffusional aggregation of these 
nanoparticles to form uniform polycrystalline colloids. 

Uniform particle formation in solution, is an active 
field with many open problems and experimental as well 
as theoretical challenges. We have developed quantitative 
modeling [1,3,5-8] of the narrow size distributions 
observed for properly selected experimental conditions in 
synthesis of “monodispersed” (uniform) colloidal particles 
of various compositions. We have also addressed 
quantitatively [9] the nanoparticle size distribution in the 
model of burst nucleation, which, however, in its 
“classical” form is expected to be at best only 
approximately valid for real nanoparticle synthesis. 

In Section 2, we generally address the particle size 
selection mechanism. In Section 3, we outline a 
mathematical treatment of diffusional growth by capture of 
monomers. Our model for burst nucleation of 
nanoparticles is presented in Section 4, in which we also 
survey the limitations of the model. When burst nucleation 
is accompanied by the secondary process of nanoparticle 
aggregation, self-assembly of uniform particles of colloid 

dimensions results. This two-stage process is surveyed in 
Section 5. Finally, in Section 6 we discuss additional 
developments and open problems, specifically the shape 
selection and shape distribution in fine particle synthesis. 

 
 
2. Size selection in uniform particle synthesis 
 
The concept of “monodispersed” colloid particles for 

applications, usually implies particle diameter distributions 
of relative width 6-12%. For nanosize particles, what do 
we mean by “monodispersed” at the nanoscale? It is 
expected that for nanotechnology applications, uniform 
size (and shape) really means “atomically identical.” This 
is particularly true for future electronic devices. For many 
other applications, requirements for nanoparticle 
uniformity will also be strict.  

Therefore, methods of controlling size and shape 
distributions, important for most applications of colloid 
suspensions, will be even more important for 
nanotechnology. Here we consider situations with 
“building blocks” from which particle are formed, as well 
as particles themselves, transported by diffusion in 
solution. The singlet (monomer) building blocks in 
nanoparticle synthesis in solution are atomic-size solute 
species (atoms, ions, molecules), whereas for colloid 
synthesis they are the (nanosize, typically nanocrystalline) 
primary particles. In the colloid case, the supply of singlets 
is “naturally” controlled by the parameters of their own 
burst nucleation. However, in principle the monomers for 
both processes can be also added/mixed in externally. 

A particle size distribution of interest is illustrated in 
Fig. 1. Mechanisms such as cluster-cluster aggregation or 
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cluster ripening due to exchange of monomers, while 
making the size distribution grow, also broaden it: They 
cannot lead to narrow size selection. Indeed, most 
growth/coarsening mechanisms that involve diffusional 
transport broaden the distribution because larger particles 
have larger collection area for capturing “building blocks,” 
as well as, e.g., for spherical particles, less surface 
curvature, which implies generally slightly better binding 
of monomers, resulting in less detachment. 

Narrow particle size distribution can be achieved by 
several techniques. The simplest is to actually block the 
growth of the “right side” of the peak, cf. Fig. 1, by 
“caging” the particles. An example could be nanoparticles 
grown inside nanoporous structures or objects. We do not 
consider this technique, which has been reviewed, e.g., in 
[10], and has a disadvantage of requiring the use of 
additional chemicals that later remain part of the formed 
particles. 

Another approach involves dynamical processes that 
erode the left side of the peak, fast enough as compared to 
the peak broadening by coarsening processes, to maintain 
narrow distribution. The burst-nucleation process analyzed 
in Section 3, falls in this category. Unfortunately, other 
coarsening processes can eventually broaden the 
distribution after the initial nucleation burst. We will return 
to these issues in Section 3. 

An important mechanism [1] that yields particle size 
distributions narrow on a relative scale, involves fast 
supply of monomers, of concentration ( )C t , see Fig. 1. 
The monomers “feed” the peak, thus pushing it to larger 
sizes, and the process can be fast enough not to 
significantly broaden the distribution on a relative scale, 
and, with proper time-dependent ( )C t , not to generate too 
large a “shoulder” at small clusters. It is therefore quite 
natural to focus on the time dependence of the singlet 
(monomer) availability, and its impact on the size 
distribution of the products. Specifically, for nanosize 
particle preparation, there has been interest in stepwise 
processes, e.g., [11,12]: After achieving the initial 
nanoparticle distribution, batches of singlets are added to 
induce further growth. 

Let ( )sN t  denote the density of particles consisting of 
s  singlets, at time t . We are interested in the situation 
illustrated in Fig. 1: The distribution evolves in time with a 
peak eventually present at some relatively large s  values. 
Let us denote the singlet concentration by 

 
1( ) ( )C t N t≡ .          (1) 

 
The singlets can be supplied as a batch, several 

batches, or at the rate ( )tρ , per unit volume. They are 
consumed by the processes involving the production of 
small clusters, in the “shoulder” in Fig. 1. They are also 
consumed by the growing large clusters in the peak.  

 

 
 

 
 

Fig.  1. The top panel illustrates the desired particle size 
distribution. The peak at the larger cluster sizes can 
grow fast, at the expense of the singlets, which can be 
supplied externally. The distribution for 1s >  can be 
usually assumed a smooth function of s , though the 
vertical bars at 1,2,3,4s =  emphasize that the s  
values are actually discrete. The bottom panel: SEM 
image of polycrystalline spherical CdS colloid particles 
illustrating   the   attainable   uniformity  of  the  size  and     
                                shape distribution. 
 
 
There are two issues to consider: How is the peak 

created in the first place, and how to grow it without much 
broadening. In the next section, we address some 
mathematical aspects of the latter issue. Regarding the 
former issue, for nanoparticle synthesis the main 
mechanism of the early formation of the peak is by burst 
nucleation, when nuclei of sizes larger than the critical size 
form by growing over the nucleation barrier. Of course, 
seeding is another way of initiating the peaked size 
distribution both for colloid and nanoparticle growth. For 
colloid synthesis without seeding, the initial peak 
formation is more subtle and could actually be a result of 
few-singlet cluster-cluster aggregation at the early growth 
stages, as further mentioned at the end of Section 6. 
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3. Singlet-driven particle growth 
 
We consider a mathematical model of growth 

dominated by irreversible capture of singlets by the larger 
growing aggregates.  We use the rate equations, with sΓ  
denoting the rate constants for singlet capture by the 1s ≥  
aggregates,  

 

1 1( )s
s s s s

dN N N C
dt − −= Γ − Γ , 2s > ,          (2) 

 
2

1 2 2
1( )
2

dN C N C
dt

= Γ − Γ ,           (3) 

 

2
1

2 2

s
s s

s s

dNdC s C C N
dt dt

ρ ρ
∞ ∞

= =
= − = − Γ − Γ∑ ∑ .       (4) 

 
The approximation that the only process involving the 

1s >  aggregates is that of capturing singlets at the rate 
proportional to the concentration of the latter, sCΓ , has 
been commonly used, e.g., [1,5-6,13-15]. We will 
comment on elaborations later. More complex processes, 
such as cluster-cluster aggregation [16,17], detachment 
[2,4] and exchange of singlets (ripening), etc., also 
contribute to particle growth. However, in colloid 
synthesis they are much slower than the singlet-
consumption growth. In addition, they broaden the particle 
size distribution. 

Another approximation involved in writing Eqs. (2-4) 
is that of ignoring particle shape and morphology 
distribution. We avoid this issue, which is not well 
understood, by assuming that the growing aggregates 
rapidly restructure into compact bulk-like particles, of an 
approximately fixed shape, typically, but not always, 
spherical for colloids. This has been experimentally 
observed in uniform colloid synthesis [1,18-23]. Without 
such restructuring, the aggregates would be fractal [17,24]. 
in Section 6, we comment on the shape selection issue as 
an unsolved problem. 

For nanosize particle formation, the assumptions in 
the present approximation that should be scrutinized are 
those of ignoring singlet detachment, and “embryo” 
breakup, for the particles in the shoulder in Fig. 1. Indeed, 
unlike colloid growth, which is fast and irreversible for all 
s  in solution synthesis processes, the nanosize particle 
growth will be typically held back by a nucleation barrier 
[1,6,9,11]. During the late stage growth, that follows the 
initial nucleation burst [9,25,26], the barrier can be quite 
high. The distribution in the shoulder will approach the 
equilibrium Boltzmann form, governed by the excess free 
energy of the aggregate formation. It is interesting to note 
that this fast equilibration means that the singlets “stored” 
in the small, “shoulder” aggregates will be ultimately 
available for consumption by larger aggregates in the peak. 
Burst nucleation is analyzed in Section 4.  

Here we focus on the situations for which the 
assumptions leading to Eqs. (2-4) apply: “Minimal” 
models of colloid growth and certain stepwise nanoparticle 

growth processes. If the singlets are supplied/available 
constantly, then the distribution, both for colloids and 
nanoparticles, will develop a large shoulder at small 
aggregates, with no pronounced peak at 1s >> . If the 
supply is limited, then only small aggregates will be 
formed. Our key recent discovery in studies of colloid 
synthesis [1,6] has been that there exist protocols of singlet 
availability, at the rate ( )tρ  which is a slowly decaying 
function of time, that yield peaked (at large sizes) 
distributions at large times. Furthermore, the primary 
(nanocrystal nucleation) process in uniform polycrystalline 
colloid synthesis, naturally “feeds” the secondary process 
(of nanoparticles aggregation to form colloids) just at a 
rate like this. 

Solution of Eqs. (2-4) requires numerical approaches 
and is not particularly illuminating as to the nature of the 
particle growth. Therefore, to explore the nature of the 
peak growth, in this section we will introduce several 
additional assumptions which will allow us to go a long 
way in simplifying the problem in closed analytical form. 
The main idea is that, once the peak is formed after some 
transient time or by seeding, the particles in the peak are 
the main consumers of the available singlets. 

This assumes that the singlet concentration is 
controlled by adding them externally [6,11,12]. For 
nanoparticles, the addition should be at such a rate that the 
nucleation barrier remains high. The shoulder will then 
adjust to assume an approximately equilibrium shape, but 
the production of new larger, supercritical aggregates will 
be negligible. For colloid growth, the shoulder will also 
evolve, with new particles generated. However, if the 
number of larger aggregates is already significant, they 
will dominate the consumption of singlets. 

In order to understand how a well-developed peak can 
evolve while remaining relatively narrow, let us entirely 
inhibit generation of new small aggregates, by setting 

 
1 0Γ → ,           (5) 

 
which is an approximation appropriate for the later-time 
regime when a well-developed peak already exists and 
particles in it are the main “consumers” of singlets, 
whereas production of new small particles into the 
shoulder of the distribution, see Fig. 1, which also occurs 
by consumption of singlets, no longer plays any significant 
role. Furthermore, we will assume that s  is a continuous 
variable, since we are interested here in 1s >> , and that it 
varies in the range 0 s≤ < ∞ . 

For calculations assuming singlet transport by 
diffusion, one can take the large- s  Smoluchowski 
expression for the rates [2,27-28], 

 
1/ 3

1s s>>Γ = ϒ ,          (6) 
 

where ϒ  is a known constant. Note that 1s>>Γ  is 
proportional to the aggregate linear dimension (which 
yields the factor 1/3s ) times the singlet diffusion constant. 
The results in this section actually apply for general sΓ . 
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The last approximation is introduced while deriving 
the continuous- s  form of Eq. (2): We retain only the 
leading s  derivative, ignoring the “diffusive” second-
derivative term (this will be revisited later, in Section 4). 
The consequences of this approximation, used, e.g., in 
[6,13], will be discussed later. Thus, we replace Eq. (2) by 

 

[ ]( , ) ( ) ( ) ( , )N s t C t s N s t
t s

∂ ∂
= − Γ

∂ ∂
,         (7) 

 
with Eq. (4) replaced by 

 

[ ]
0

( ) ( ) ( ) ( ) ( , )dC t t C t ds s N s t
dt

ρ
∞

= − Γ∫ .          (8) 

 
Let us define 
 

0

( ) ( ) 0
t

t dt C tτ ′ ′= ≥∫ ,                          (9) 

 
and introduce the function ( , )u s τ  via the relation 

 

( )

s

u

ds
s

τ
′

=
′Γ∫ .          (10) 

 
We point out that usually ( ) 0s′Γ > , and the lower 

limit of integration can be taken to zero. The asymptotic 
rate in Eq. (6) does vanish at argument 0, because of our 
cavalier treatment of the small- s  behavior. However, the 
integral happens to converge, so no additional care is 
needed. We can safely define the quantity min ( )s τ  via 

 
min

0 ( )

s ds
s

τ
′

=
′Γ∫ .        (11) 

 
As u  is increased from zero to infinity, the 

corresponding ( , )s u τ , for fixed τ , increases from 

min ( )s τ  to infinity.  
 
Next, we notice that the relation between the 

differentials implied by Eq. (10), namely, 
 

( ) ( )
ds dud

s u
τ = −

Γ Γ
,                (12) 

 
allows us to calculate partial derivatives in terms of ( )sΓ  

and ( )( )( ) , ( )u u s tτΓ = Γ . This, in turn, allows one to 
verify, by a cumbersome calculation not reproduced here, 
that Eq. (7) is solved by 

 

( )( ) ( )( )
, ( )

( , ) , ( ) ,0
( )

u s t
N s t N u s t

s
τ

τ
Γ

=
Γ

, 

  
  for ( )min ( )s s tτ≥ ,         (13) 

 
and 

( , ) 0N s t = , for ( )min0 ( )s s tτ≤ ≤ ,     (14) 
 

where the discontinuity at ( )min ( )s tτ  is possible if the 
initial distribution at time zero, ( ,0)N s , is nonzero at 

0s = . Actually, within the present approximation of 
ignoring the effects of the details of the size distribution 
for small s , we could as well set (0,0) 0N = . 

Let us summarize the above observations by 
emphasizing that we consider a particle size distribution 
which at time 0t =  already has a well-developed 
significant peak at large cluster sizes. Equations (13-14) 
will provide an approximate description of further 
evolution of this peak with time, due to supply of singlets 
at the rate ( )tρ . The form of the distribution at small 
particle sizes plays no role in the derivation. In fact, 
neglecting the second-derivative in s , “diffusive” term in 
writing Eq. (7), leads to certain artificial features. 
Specifically, sharp corners and discontinuities of the initial 
distribution (as well as its derivatives, etc.) will not be 
smoothed out. The fact that the initial distribution is only 
meaningful for 0s ≥  translates into the sharp cutoff at 

mins  for times 0t > . Had we included the diffusive term, 
the distribution would extend smoothly to 0s =  for all 
times. However, no closed-form analytical solution would 
be available. While this lack of smoothness is probably not 
important for a semi-quantitative evaluation of the size 
distribution, one aspect should be emphasized as critical: 
If the initial distribution is already very sharp, then the 
neglect of the diffusive term in our expressions may result 
in underestimating the width of the evolving peak. 

To complete the description of the particle size 
distribution within the non-diffusive approximation, we 
have to discuss the estimation of the function ( )tτ . 
Equations (8-9) can be rewritten, using Eq. (13), as a 
system of coupled differential equations for two unknown 
functions ( )tτ  and ( )C t , with (0) 0τ = , and (0)C  
externally controlled, 

 

( )d C t
dt
τ
= ,           (15) 

 

( ) ( ) ( )dC t C t F
dt

ρ τ= − ,         (16)  

 
where 

 ( ) ( )
min ( )

( ) ( , ) ( , ),0
s

F ds u s N u s
τ

τ τ τ
∞

= Γ⎡ ⎤⎣ ⎦∫ .   (17) 
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These equations are easily programmed for numerical 
evaluation, especially if the function ( )F τ  is calculable 
analytically, so that numerical integration can be avoided. 
The latter might be possible for the power-law rate in 
Eq. (6), provided the initial distribution ( ,0)N s  is not too 
complicated. 

Within the approximation developed here, the number 
of particles larger than singlet, M , obviously remains 
constant, 

 

min ( ) 0

( , ) ( ,0)
s t

M dsN s t dsN s
∞ ∞

= =∫ ∫ .        (18) 

 
The change in the average size of the particles larger than 
singlet, 

 

[ ]
min ( )

1 ( , )t
s t

s ds sN s t
M

∞

= ∫ ,        (19)  

  
can be evaluated directly from ( )C t , 

 

0
0

1 [ (0) ( ) ( )]
t

ts s C C t dt t
M

ρ′ ′= + − + ∫ .       (20) 

 
Furthermore, consideration of the increment relations 

following from Eq. (12), suggests that the growth of the 
width of the peak, tW , can be roughly estimated from 

 
( )

( )( ) 0 0
, ( )
t

t
t

s
W W W

u s tτ

Γ
≈ >
Γ

,     (21) 

 
where the inequality follows from Eq. (10), assuming that 
for large s , ( ) 0sΓ >  is an increasing function. This 
excludes an important case of constant Γ , appropriate for 
certain models of polymerization. In that case, however, 
Eqs. (2-4) can be analyzed directly [14,15], so that the 
present formulation is not needed.  

In connection with Eq. (21), we note that additional 
broadening will result from the second-derivative 
“diffusive” term neglected in our continuous- s  equations. 
The model with the diffusive term included, requires 
serious numerical efforts, as does the original, discrete- s  
model; however, see Section 4 for some explicit 
expressions. 

In summary, with the reservations regarding the width 
(under)estimates, numerical calculation of the functions 

( )tτ  and ( )C t , via Eqs. (15-17), goes a long way in 
estimating various properties of the growing, peaked size 
distribution. Even at the level of the approximations 
leading to Eq. (21), it is obvious that the size distribution 
never actually narrows in absolute terms. Specifically, 
experimentally realized monodispersed particle synthesis 
procedures in solution, in the colloid domain, actually 

yield small relative peak width, t tW s , by utilizing fast 

increase in ts  via consumption of singlets, on the time 
scales too short for the “diffusive” broadening to set in. 

 
 
4. Burst nucleation 
 
The model of burst nucleation [9,25,26] is appropriate 

for nanosize particles, typically, crystals, consisting of n  
monomers (we will reserve s  for the count of singlets in 
growth of colloids, considered in Sections 5-6). The larger 
particles, with cn n> , where cn  is the critical cluster size,  
irreversibly capture atom, ion or molecule singlets which 
are diffusing solutes. However, the dynamics in the 
shoulder, for cn n< , see Fig. 2, vs. Fig. 1, is no longer 
ignored: The subcritical ( cn n< ) aggregates are assumed 
instantaneously rethermalized. 

Thus, it is assumed that in a supersaturated solution 
with time-dependent monomer concentration ( )c t , 
thermal fluctuations cause formation of aggregates 
(embryos), controlled by the free-energy barrier imposed 
by the surface free energy. The full dynamics of these few-
atom clusters involves complicated transitions between 
embryos of various sizes, shapes, as well as internal 
restructuring. These processes are presently not well 
understood. However, the dynamics of embryos is fast, 
and their sizes are approximately thermally distributed and 
modeled by a Gibbs-like form [1,5] of the free energy of 
an n-monomer embryo,  

 
( ) ( ) ( ) ( )2 2 / 3

0, 1 ln 4 1G n c n kT a nc c π σΔ = − − + − ,      (22) 

 
where k  is Boltzmann constant, T  is the temperature, 0c  
is the equilibrium concentration of monomers, and σ  is 
the effective surface tension. 

The first term is the bulk contribution. It is derived 
from the entropy of mixing of noninteracting solutes and is 
negative for 0c c> , therefore favoring larger clusters. The 
second, positive term represents the surface free-energy, 
proportional to the area, 2 /3n� . The effective solute 
radius, a , is defined in such a way that the radius of an n -
solute embryo is 1/3an . It can be estimated by requiring 
that 34 3aπ  equal the unit-cell volume per singlet 
(including the surrounding void volume) in the bulk 
material. 

As in most treatments of homogeneous nucleation, we 
assume that the distribution of aggregate shapes can be 
neglected: A “representative” aggregate is assumed 
spherical in the calculation of its surface area and the 
monomer transport rate to it. We note that even the surface 
tension of spherical particles varies with their size. This 
effect, as well as any geometrical factors that might be 
needed because real clusters are not precisely spherical, is 
neglected. The effective surface tension of nanoparticles is 
only partially understood at present [29]. Thus, σ  can be 
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either assumed [1,5,7,8] close to bulkσ , or fitted as an 
adjustable parameter. 

The free energy, Eq. (22), increases with n  until it 
reaches the “peak of the nucleation barrier” at cn , 

 
  

 Fig 2. The top panel schematically illustrates the large-
time form of cluster size distribution in burst nucleation. 
The bottom panel sketches the time dependence of the 
critical cluster size, showing the induction period, 
followed  by  the  “burst,”  and  then   the  asymptotically  
                                linear growth. 

 
 
 

( ) ( )

32

0

8
3 lnc

an c
kT c c

π σ⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

.         (23) 

 
For cn n> , the free energy decreases with n . 

However, the kinetics then becomes irreversible and is no 
longer controlled by GΔ . 

The specific property of burst nucleation is that the 
barrier, and cn , strongly depend on the monomer 
concentration, c , which leads to a significant suppression 
of nucleation after the initial burst, during which 0c c  
decreases from its initial value 0(0) 1c c �  to it 
asymptotic large-time equilibrium value 1. The large-time 

form of the particle size distribution in burst nucleation is 
shown in Fig. 2. Specifically, the embryonic matter below 

cn  is thermalized on time scales much faster than those of 
other dynamical processes, so that the concentration of 
embryos, with sizes in dn , is given by ( , )P n t dn , with the 
particle size distribution 

   

 ( , ( ))( , ) ( ) expc
G n c tP n n t c t

kT
−Δ⎡ ⎤< = ⎢ ⎥⎣ ⎦

, (24) 

 
where ( ( ))c cn n c t= .  
 

The rate of production of supercritical clusters, to be 
denoted by ( )tρ  for use in Section 5, is then expressed [1] 
as 

 

( ) ( )2 ,
( ) , exp

c c
c

n c n
G n

t K P n t K
kT

cc cρ
−Δ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

,  (25) 

 
where 1/ 34nK an Dπ=  is the Smoluchowski expression 
[2,27,28] for the rate of irreversible intake of diffusing 
solutes by growing spherical clusters. We already 
encountered this rate in Eq. (6). Here we use the large- n  
form for supercritical clusters, 1cn n≥ � , and D  is the 
diffusion coefficient for monomers in a solution with 
viscosity η . D  can be estimated as 6kT aπη� , up to 
geometrical factors (the effective unit-cell-derived radius 
a  must be replaced by the hydrodynamic radius for 
diffusing monomers). 

Although real clusters undergo both attachment and 
detachment of monomers (with detachment still present at 
sizes above cn ), we model the expected rapid growth of 
the supercritical, cn n> , clusters within the approximation 
of irreversible capture of diffusing monomers,  

  

( ) ( )0 1
( , ) ( ) ( 1, ) ( , )n n

P n t c t c K P n t K P n t
t −

∂
= − − −

∂
. (26) 

 
Comparing to Eq. (2), the difference 0( )c t c−  is used 

here in place of ( )c t  to ensure that the growth of clusters 
stops when the equilibrium concentration 0c  is reached. 

The variation of the nanocluster surface tension with 
its radius, mentioned above, is accompanied by a variation 
of the effective equilibrium concentration, 0c , with radius, 
which gives rise to Ostwald ripening [30]. This, as well as 
other possible coarsening processes, such as cluster-cluster 
aggregation [16,17], are neglected here because burst 
nucleation is expected [1,9] to be a much faster process. 
However, for large times such coarsening processes will 
gradually widen the particle distributions seen in 
experiment and slow down the growth of the particle size, 
which, as will be argued shortly, for burst nucleation alone 
is well characterized by the function ( )cn t  schematically 
shown in Fig. 2. Furthermore, in some situations the large-
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time asymptotic linear behavior has a very small slope 
[31], so de-facto the growth would “freeze” if it were due 
to burst-nucleation alone. 

We further comment that in addition to growth 
(shrinkage) by attachment (detachment) of monomers, 
clusters of all sizes can undergo internal restructuring, a 
complex phenomenon the modeling of which for 
nanoscale clusters is only in its early stages [32,33]. 
Without such restructuring, the clusters would grow 
according to diffusion-limited aggregation or similar 
processes and could be fractals [16,17], whereas 
observations of the density and X-ray diffraction data of 
colloidal particles aggregated from burst-nucleated 
nanocrystalline subunits indicate that their polycrystalline 
structure has the density of the bulk [1,34]. There is 
primarily experimental, but also modeling evidence 
[1,4,5,7,8], that for larger clusters such restructuring leads 
to compact particles with smooth surfaces, which then 
grow largely irreversibly. 

The “right side” of the supercritical distribution, see 
Fig. 2, grows towards larger clusters by capturing 
monomers, but, at the same time, its “left side” is eroded 
by the thermalized subcritical distribution which extends 
up to ( )cn t  — a monotonically increasing function of 
time. The form of the supercritical distribution depends on 
the initial conditions. As will be demonstrated shortly, at 
large times it will eventually have its maximum at cn n= , 
and will take on the form of a truncated Gaussian. This is 
illustrated in Fig. 2, where the peak of the full Gaussian 
curve (not shown) is actually to the left of cn .   

Numerical results for time-dependent distributions 
and for several initial conditions, presented in [9], were 
obtained by a novel efficient numerical integration scheme 
which is not reviewed here. In what follows, we 
concentrate on the derivation of analytical results for large 
times. We note that one must be consistent, in both the 
asymptotic and numerical treatments, with the conventions 
for relating the discrete-n quantities, such as the monomer 
concentration ( )c t , to the values of the continuous 
distributions. We have chosen the simple convention 

( ) (1, )c t P t= , rather than, e.g., a convention to treat the 
monomer concentration ( )c t  separately of the rest of the 
distribution, as was done in Section 3. Then the 
conservation of matter is expressed by that the quantity 

 

( )
1

, ( )
( ) exp ( , )

c

c

n

n

G n c t
n c t dn n P n t dn

kT

∞−Δ⎡ ⎤
+⎢ ⎥

⎣ ⎦
∫ ∫        (27) 

remains constant as a function of time. 
It can be shown that for large times the kinetic 

equations suggest an asymptotic parameterization of the 
form 

 

( ) ( )2 2
0( , ) ( ) exp ( ) ( )GP n t t c t n K tζ α⎡ ⎤= − −

⎣ ⎦
,       (28) 

 
for ( )cn n t>  and large t . We also define the “peak offset” 

 

 ( ) ( ) ( )cL t n t K t≡ − .            (29) 
 
The asymptotic analysis starts with writing Eq. (26) in 

a continuous- n  form. Unlike Section 3, here we are 
interested in the precise peak shape and therefore we keep 
terms up to the second derivative, 

 

( ) ( )
2

0 2
1
2 n

P c c K P
t nn

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂∂⎢ ⎥⎝ ⎠⎣ ⎦

.          (30) 

 
This describes the irreversible growth of clusters 

above the critical size, where, within the assumption of the 
narrow Gaussian, ( , )P n t  takes on appreciable values only 
over a narrow range. Thus we can approximate, for 
evaluation of the asymptotic behavior, 

( )1/ 3
0( )

cn n cK K n t cκ≈ = , where 04 c aDκ π≡ . In terms 
of the dimensionless quantity 

 
0( ) ( )x t c t c≡ ,            (31)   

 
we get 
 

( ) ( )
21/ 3
2

1
2

( ) 1 ( )c
P P
t nn

x t n tκ
⎛ ⎞∂ ∂ ∂

= −⎜ ⎟⎜ ⎟∂ ∂∂⎝ ⎠
− .  (32)

  
 
From Eq. (23), in the large-time limit, when 

0( )c t c→ , we have ( ) 1/ 3( ) 1 ( )cx t n t −− ∝ , which cancels 

the factor ( )1/ 3( )cn t  in Eq. (32). For later convenience we 
introduce the constant z  via 

 
2 3

2 064
3
a c Dz
kT

π σ
≡ .          (33) 

 
With this definition, for large times Eq. (32) then 

reduces to 
 

2 2

2
1

2 2
P z P
t nn

⎛ ⎞∂ ∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂∂⎝ ⎠

.         (34) 

 
Substituting the Gaussian Eq. (28) into Eq. (34), 

establishes that the solution is indeed of the conjectured 
form and yields [9] the following asymptotic results for 
the parameters: 

 
 

,  , (35) 
 
The preafctor Ω  cannot be determined from the 

asymptotic analysis alone, because the overall height of 
the distribution is obviously expected to depend on the 
initial conditions. 
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 The asymptotic behavior of the peak offset, Eq. (29), 
follows from the conservation of matter. Indeed, for large 
times the second term in Eq. (27) will be approximated by 

 

( )

( , )
c

G
n t

nP n t dn
∞

∫ ,          (36) 

 
which must approach a constant value, equal to the 

initial total matter less the matter that remains in the 
thermal distribution as 0c c→ . The rather complicated 
mathematical analysis that follows, will not be reproduced 
here; see [9].  

The key result is that conservation of matter implies  
 

( ) lnL t t t∝              (37) 
 

for large times. Therefore, the leading asymptotic behavior 
of the critical cluster size is the same as that for ( )K t , 
 

 nc(t)~z2t/2         (38) 
 
Since the width of the truncated Gaussian is still given 

by 1/α~√t, we note that our results suggest linear growth 
of the distribution for large times, see Fig. 2, with the 
relative width decreasing with time as ~t-1/2. Finally, one 
can show [9] that the difference 0( )c t c−  approaches zero 
as ~t-1/3. 

 We comment that the Gaussian distribution has 
provided a good fit at intermediate and large times for 
numerical data for various initial conditions, including for 
initially seeded distributions; see [9]. Numerical 
simulations also confirm the other expected features of 
burst nucleation, summarized in Fig. 2: The initial 
induction period followed by growth “burst” that precedes 
the onset of the asymptotically linear growth. 

It is experimentally challenging in many situations to 
unambiguously quantify the size distribution of nucleated 
nanocrystals, because of their tendency to aggregate, their 
distribution of non-spherical shapes, and other factors. 
Still, it is commonly found (and expected) in experiment 
that the distribution is two-sided around the peak, and that 
the final particles stop growing after a certain time. Both 
of these experimental observations are at odds with the 
predictions of the burst-nucleation model, and the 
discrepancies can be attributed to the assumed 
instantaneous thermalization of the clusters below the 
critical size. At very small sizes, below a cutoff value, 
which can be speculated to correspond to th 15-25n ≈  
monomers [6-8,35-37] (atoms, molecules, sub-clusters), 
structures can evolve very rapidly, so that the assumption 
of fast, thermally driven restructuring is justified.  

At larger sizes, however, embryos can be expected to 
undergo a transition in which their internal atoms assume a 
more stable, bulk-like crystal structure, and they no longer 
restructure as easily, except perhaps at their surface layers. 
Thus for times for which th( )cn t n> , the “classical” 
nucleation model should be regarded as approximate. 
Modifications of the model have been contemplated in 
several previous studies of nucleation [9,38,39].  

This, however, requires introduction of new 
parameters which are not as well defined and as easily 
experimentally accessible as those of the “classical” 
nucleation model. In fact, one of the most interesting 
applications of our present theoretical developments would 
be to try to estimate, based on experimental data, the 
deviations from the “classical” behavior and thus obtain 
information on the value of thn  — the nanostructure size 
beyond which a “bulk-material” core develops.  

A similar effect in colloid synthesis will be mentioned 
in Section 6. 

The extent to which our (unmodified) model describes 
the initial burst, as well as the range of applicability of the 
prediction of linear growth of ( )cn t , are interesting topics 
to explore further. We recall that other processes at all 
cluster sizes, such as cluster-cluster aggregation and 
ripening, can also modify the kinetics of the distribution, 
albeit these are usually expected to play role at time scales 
much larger than the initial nucleation burst. 

 
 
5. Synthesis of uniform colloids 
 
As described in the preceding section, the burst-

nucleation mechanism, which ideally can yield narrow size 
distributions, is never realized in practice for extended 
growth times.  

 
 

Fig 3. The two-stage synthesis mechanism of uniform 
colloids by self-assembly of diffusing aggregating 
nanocrystalline precursor subunits which are, in turn, 
formed by burst nucleation in a supersaturated solution, 
likely   followed    by    additional    growth/coar   sening. 
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For larger particles, nucleated in the initial burst and 
then grown to dimensions typically over several tens of 
nanometers in diameter, other growth mechanisms usually 
broaden the size distribution. Here we consider the two-
stage mechanism whereby the nanosized primary particles, 
burst-nucleated and growing in solution, themselves 
become the singlets and are “consumed” by the singlet-
driven aggregation that results in uniform secondary 
particles of colloid dimensions.  

The primary process is of the type considered in 
Section 4, whereas the secondary process is the one 
introduced in Section 3. 

A large number of dispersions of uniform colloid 
particles of various chemical composition and shape, 
ranging in size from fraction of a micron to few microns, 
have been synthesized via the two-stage route [1,7-8,18-
23,34,40-56]. Indeed, it has been found that many 
spherical particles precipitated from solution showed 
polycrystalline X-ray characteristics, such as ZnS [42], 
CdS [7,8,41], Fe2O3 [40], Au and other metals [1,23,52-
54,56], etc. These particles are not single crystals. Rather, 
several experimental techniques have confirmed that most 
monodispersed colloids consist of small crystalline 
subunits [1,7-8,18-23,34,40-56]. Furthermore, experiments 
have observed [1,23,50] that the crystalline subunits in the 
final particles were of the same size as the diameter of the 
precursor singlets of sizes of order up to a couple of 
10 nm, formed in solution, thus suggesting an aggregation-
of-subunits mechanism. This two-stage growth process is 
summarized in Fig. 3. The composite structure has also 
been identified in uniform non-spherical colloid particles 
[40,46-48,55], albeit perhaps thus far not as definitively as 
for the spherical case.  

Here we review the simplest (in that it avoids 
introduction of unknown microscopic parameters) model 
that involves the coupled primary and secondary 
processes. Even this model requires numerical calculations 
and cannot be analyzed in closed form. In Section 6, we 
describe some improvements of the model that allow for 
better agreement with experimental observations. 
Additional details, examples of experimental parameters 
and results, and well as sample numerical data fits can be 
found in [1,5,7,8,57]. 

The reader might recall that in modeling the burst 
nucleation process in Section 4, the supercritical 
distribution was described by Eq. (26). To calculate the 
subcritical distribution, one only requires an expression for 
the time derivative /dc dt , since the whole subcritical 
distribution can be calculated if we know ( )c t , see Eq. 
(24). We did not review, but only referenced our work [9] 
for mathematical steps, involving the conservation of 
matter, that give Eq. (37) and also yield a complicated 
expression for /dc dt  (not shown).  

When the burst-nucleated supercritical particles are 
largely consumed by the secondary aggregation, we can 
instead assume that these primary particles are captured 
fast enough by the growing secondary particles so that the 
effect of their aging on the concentration of solutes can be 
ignored. Furthermore, the radius of the captured primary 
particles will be assumed close to the critical radius. We 

discuss the implications of these assumptions shortly. For 
now, we write our first expression that applies for the two-
stage process, but does not apply to burst nucleation alone,  

 

c
dc n
dt

ρ= − .         (39) 

 
Recall that the rate of supercritical particle 

production, ( )tρ , was defined in Eq. (25) and is a known 
function of ( )c t . Thus, Eq. (39), which expresses our 
approximation that the concentration of solutes is depleted 
solely due to the irreversible formation of the critical-size 
nuclei, yields 
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π σ π σ⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

, (40) 
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2 2( ) exp
3 ln( / ) (3 ) [ln( / )]

aa D c at
kT c c kT c c
π σ π σρ

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

,     (41) 

 
which can be used to numerically calculate ( )tρ . The 
notation for various quantities here is the same as in 
Section 4. However, we denoted by aD  the diffusion 
constant of the solutes, in order to distinguish it from that 
of the supercritical primary particles that constitute the 
“singlets” for the secondary process, to be denoted pD . 

The growth of the secondary (colloid) particles is 
facilitated by the appropriate chemical conditions in the 
system: The ionic strength and/or pH must be kept in 
ranges such that the surface potential approaches the 
isoelectric point, resulting in reduction of electrostatic 
barriers, thus promoting fast irreversible primary particle 
attachment. Formation of the secondary particles is clearly 
a diffusion-controlled process [1,18-23].  

We describe the process by the equations for the 
distribution of growing particles by their size, cf. Eqs. (1-
4). Here it is assumed that the particles are spherical, with 
the density close to that of the bulk material. 
Experimentally, the growing particles rapidly restructure 
to assume the final shape and density: They are not fractal 
even though the transport of the constituent units is 
diffusional. The modeling of this restructuring is an 
interesting unsolved problem on its own, but, as long as 
the restructuring is fast, its mechanism plays no role in 
formulating the model equations. 

The cluster size 1,2,3, ( )sN t= K  will be defined by how 
many primary particles (singlets) were aggregated into 
each secondary particle. The notation here is similar to that 
in Sections 2 and 3. For example, Eqs. (2-4) can be solved 
numerically with the initial conditions 1,2,3, (0) 0sN = =K . 
The simplest choice of the rate constants is the 
Smoluchowski expression  
 

1/ 34s p pR D sπΓ ≈ ,         (42) 
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where pR  is the primary particle radius, and the 
approximate sign is used because several possible 
improvement to the simplest formula can be offered, as 
will be described below. A typical numerical calculation 
for a model of this type is shown in Fig. 4, illustrating the 
key feature  —  size selection  —  the “freezing” of the 
growth even for exponentially increasing times (here is 
steps ×10). 

Let us now discuss some of the numerous simplifying 
assumptions made in the model just formulated. We will 
also consider possible modifications of the model. In fact, 
Fig. 4, which was based on one of the sets of the parameter 
values used for modeling formation of uniform spherical 
Au particles, already includes some of the modification; 
see [5] for details. 

 
 

 
 

Fig 4. Example of a calculated colloid particle size 
distribution (in arbitrary units), plotted as a function of 
the colloid particle radius. The parameters correspond to 
a  model  of  formation  of  spherical Au colloid particles,  
                            referenced in the text. 

 
 
We note that since the assumption s~1 is not 

applicable, the full Smoluchowski rate expression 
[2,27,28] should be used, which, for aggregation of 
particles of sizes 1s  and 2s , on encounters due to their 
diffusional motion, is 

 

( ) ( )1 2 1 2
1/3 1/3 1/3 1/3

, 1 2 1 24s s s s p pR s s D s sπ − −
→ +

⎡ ⎤ ⎡ ⎤Γ + +⎣ ⎦ ⎣ ⎦� ,  (43) 

 
where for singlet capture 1s s=  and 2 1s = . This relation 
can not only introduce nontrivial factors for small particle 
sizes, as compared to Eq. (42), but it also contains an 
assumption that the diffusion constant of s -singlet, dense 
particles is inversely proportional to the radius, i.e., to 

1/3s− , which might not be accurate for very small, few-
singlet aggregates.  

Another assumption in Eqs. (42-43) is that the radius 
of s -singlet, dense particles can be estimated as 1/ 3

pR s . 
However, primary particles actually have a distribution of 
radii, and they can also age (grow/coarsen) before their 
capture by and incorporation into the structure of the 

secondary particles. In order to partially compensate for 
the approximations, the following arguments are used. 
Regarding the size distribution of the singlets, it has been 
argued that since their capture rate especially by the larger 
aggregates is proportional to their radius times their 
diffusion constant, this rate will not be that sensitive to the 
particle size and size distribution, because the diffusion 
constant for each particle is inversely proportional to its 
radius. Thus, the product is well approximated by a single 
typical value. 

The simplification of ignoring the primary particle 
ageing, was then further circumvented by using the 
experimentally determined typical primary particle linear 
size (“diameter”), exp2R , instead of attempting to estimate 
it as a function of time during the two-stage process. In 
fact, for the radius of the s -singlet particle, the expression 
in the first square brackets in Eq. (43), which represents 
the sum of such terms, 1/ 3

pR s , was recalculated with the 
replacement 

 
1/ 3 1/ 3

exp1.2pR s R s→ .        (44) 
 
Here the added factor is (0.58)-1/3~1.2, where 0.58 is 

the filling factor of a random loose packing of spheres 
[58]. It was introduced to approximately account for that 
as the growing secondary particle compactifies by internal 
restructuring, not all its volume will be crystalline: A 
fraction will consists of amorphous “bridging regions” 
between the nanocrystalline subunits.  

A possible inaccuracy in Eq. (39) because primary 
particles (those not yet captured) further grow by 
consuming additional solute matter, which, in fact, can be 
also directly consumed by the secondary particle surfaces, 
was partly compensated for [1] by renormalizing the 
distribution. This effect seems not to play a significant role 
in the dynamics. Some additional technical issues and 
details of the modeling are not reviewed here; see 
[1,3,5,7,8].  

Two-stage models of the type just outlined, with 
singlet capture as the main growth mode of the secondary 
particles, were shown to provide a good semi-quantitative 
description (without adjustable parameters) of the 
processes of formation of spherical colloid-size particles 
of metals, Au [1,3,5,7,57,59] and Ag [57], a salt, CdS 
[7,8], as well as argued [60] to qualitatively explain the 
synthesis of an organic colloid — monodispersed 
microspheres of Insulin. 

 
 
6. Further developments, and open problems 
 
To improve the agreement between the results of the 

two-stage model and experimental data for secondary 
particle size distribution from semi-quantitative to 
quantitative, additional considerations were required. Here 
we begin by summarizing these developments, 
culminating in successful data fits for size distributions of 
CdS [7,8] and Au [59] particles, the former measured for 

~ 
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different times during the process and for several protocols 
of feeding the solutes into the system, rather than just their 
instantaneous “batch” supply, as for the case illustrated in 
Fig. 4.  

Note that for non-batch supply of atomic-size 
“monomers,” one has to add to the model the rate 
equations for their production in chemical reactions, which 
is, in itself, an interesting problem: Such reactions, 
involving the identification and modeling of the kinetics of 
various possible intermediate solute species, are not 
always well studied or understood theoretically, and they 
are not easy to probe experimentally. 

In our numerical simulations, the parameters of the 
primary nucleation process, notably the value of the 
effective surface tension, were found to mostly affect the 
time scales of the secondary particle formation, i.e., the 
onset of “freezing” of their growth as illustrated in Fig. 4. 
Accumulated evidence suggests that the use of the bulk 
surface tension and other experimentally determined 
parameters yields reasonable results consistent with the 
experimentally observed times. 

The kinetic parameters of the secondary process seem 
to control primarily the average size of the final products. 
We found [1,3,5,7,8,59] that the particle sizes numerically 
calculated within the “minimal” model, while of the 
correct order of magnitude, were smaller than the 
experimentally observed values, by a non-negligible 
factor. The problem was traced to that the kinetics of the 
secondary aggregation, as described in Section 5, results in 
too many secondary particles which, since the total supply 
of matter is fixed, then grow to sizes smaller than those 
experimentally observed. 

Two explanations for this effect were attempted. The 
first argued that for very small “secondary” aggregates, 
those consisting of one or few primary particles, the 
spherical-particle diffusional expressions for the rates, 
which are anyway somewhat ambiguous as described in 
connection with Eqs. (42-44), should be modified. Since 
the idea is to avoid introduction of many adjustable 
parameters, the rate 1,1 2→Γ , cf. Eq. (43), was modified by 
a “bottleneck” factor, 1f < , with the underlying 
assumption that “merging” of two singlets (and other very 
small aggregates) may require substantial restructuring, 
thus reducing the rate of successful formation of a bi-
crystalline entity. The two nanocrystals may instead 
unbind and diffuse apart, or merge into a single larger 
nanocrystal, effectively contributing to a new process, 

1,1 1→Γ , not in the original model. However, data fits 

[5,7,57] yield values of order 310−  or smaller for f  , 
which seems too drastic a reduction factor. 

Another modification of the model uses a similar line 
of argument but in a somewhat different context. We point 
out that the model already assumes a certain “bottleneck” 
for particle merger — that of singlet-capture dominance. 
Indeed, all the rates in Eq. (43) with both 1 1s >  and 

2 1s > , are set to zero. This assumption was made based 
on empirical experimental observations that larger 
particles were never seen to pair-wise “merge” in solution. 

It seems that the restructuring process that causes rapid 
compactification of the growing secondary particles, and 
which is presently not understood experimentally or 
theoretically, can also cause incorporation of primary 
particles, but not larger aggregates, in the evolving 
structure, while retaining their crystalline core to yield the 
final polycrystalline colloids.  

One might then argue that perhaps small aggregates, 
up to certain cutoff sizes, max 1s > , can also be 
dynamically rapidly incorporated into larger aggregates on 
diffusional encounters. Thus, we can generalize the model 
equations, see [7,8] for details, to allow for cluster-cluster 
aggregation with rates given by Eq. (43), but only as long 
as at least one of the cluster sizes does not exceed a certain 
value maxs . The sharp cutoff is an approximation, but it 
offers the convenience of a single new adjustable 
parameter. Indeed, data fits for CdS and Au spherical 
particles, yield good quantitative agreement, exemplified 
in Fig. 5, with values of maxs ranging from 15 for Au, to 
25 for CdS.  
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Fig 5. The calculated (curves) and experimentally 
measured (histograms) particle size distributions (in 
arbitrary units), for two different times during the 
growth, plotted as functions of the particle radius.                
The  parameters  correspond  to the max 25s =  model of  
                   formation of spherical CdS colloids. 
 
 
Interestingly, these values are not only intuitively 

reasonable as defining “small” aggregates, but they also fit 
well with the concept of the cutoff value thn , discussed in 
Section 4, only beyond which atomistic aggregates 
develop a well formed “bulk-like” core. Indeed, the only 
available numerical estimate of such a quantity in solution 
[37], for AgBr nano-aggregates, suggests that thn  is 
comparable to or somewhat larger than 18 (in terms of 
molecule count, i.e., the most stable configuration for a 
Ag18Br18 nanocluster is disordered). We also comment that 
cluster-cluster aggregation at small sizes, can explain the 
formation of the initial peak in the secondary-particle 
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distribution, which later grows by the fast-capture-of-
singlets mechanism. 

The modification/elaboration of the two-stage model 
just outlined, required large-scale numerical effort and 
lead to development of adaptive-mesh (in time and cluster 
size) algorithmic techniques for efficient simulations [7,8]. 

Finally, we point out that in the described treatments 
we avoided any quantitative or even qualitative modeling 
of the particle (nanosized and colloid) shape selection. 
Many of the processes that could be treated in a cavalier 
way in studying the particle sizes will balance to 
determine the details of the shape distribution of the final 
products. These processes include particle restructuring, 
both in the interior and at surfaces, as well as monomer 
transport on particle surfaces and possible monomer 
detachment/reattachment, as well as 
detachment/attachment/reattachment/surface motion of 
larger than monomer structures. The difficulty in modeling 
these processes is two-fold. Firstly, they are presently not 
quantified and are difficult to probe experimentally. 
Secondly, their modeling would require extremely large-
scale simulations. Thus, while one can venture guesses as 
to the key processes that balance to determine the particle 
shape distribution, derivation of quantitative predictions 
and their comparison with experimental data remain an 
important open challenge in colloid and nanoparticles 
science. 
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